
MPFUN: A Portable High Performance Multiprecision Package

David H. Bailey

RNR Technical Report RNR-90-022

MPFUN: A Portable High Performance Multiprecision Package

David H. Bailey

December 18_ 1990

Abstract

The author has written a package of Fortran routines that perform a variety of arith-

metic operations and transcendental functions on floating point numbers of arbitrarily high

precision, including large integers. This package features (1) virtually universal portability,

(2) high performance, especially on vector supercomputers, (3) advanced algorithms, in-

cluding FFT-based multiplication and quadratically convergent algorithms for _r, exp and

log, and (4) extensive self-checking and debug facilities that permit the package to be used

as a rigorous system integrity test.

This paper describes the routines in the MPFUN package and includes discussion of

the algorithms employed, the implementation techniques, performance results and some

applications. Notable among the performance results is that the MPFUN package runs up

to 13 times faster than another widely used package on a RISC workstation, and it runs

up to 154 times faster than the other package on a Cray supercomputer.

The author is with the NAS Applied Research Office, NASA Ames Research Center,

Moffett Field, CA 94035.

1. Applications of Multiprecision Computation

One question that is always raised in discussions of multiprecision computation is what

applications justify such a facility. In fact, a number of applications, some of them entirely

practical, have surfaced in recent years.

One important area of applications is in pure mathematics. While some still dispute

whether a computer calculation can be the basis of a formal mathematical proof, certainly

computations can be used to explore conjectures and reject those that are not sound. Such

computations can thus save pure mathematicians a great deal of time by allowing them

not to waste time searching for proofs of false notions. On the other hand, it must be

acknowledged that if a conjecture is confirmed by computation to very high precision, then

its validity is extremely likely. One can even ask which is more firmly established, a theorem

whose lengthy proof has been read only by two or three people in the world, or a conjecture

that has been independently confirmed by a number of high precision computations?

Some particularly nice applications of high precision computation to pure mathematics

include the disproof of the Mertens conjecture by A. M. Odlyzko and H. J. J. te Ride [21],

the disproof of the Bernstein conjecture in approximation theory by Varga and Carpenter

[24] and the resolution of the "one-ninth" conjecture [24]. A number of other examples of

multiprecision applications in analysis, approximation theory and numerical analysis are

also described in [24].

One area in which multiprecision computations are especially useful is the study of

mathematical constants. For example, although Euler's constant 7 is believed to be tran-

scendental, it has not been proven that _/is even irrational. There is similar ignorance

regarding other classical constants, such as log lr and e + lr, and also regarding some

constants that have arisen in twentieth century mathematics, such as the Feigenbaum

5 constant (4.669201609-..)[14] and the Bernstein/3 constant (0.2801694990--.)[24].

However, in most of these cases algorithms are known that permit these numbers to

be computed to high precision. When this is done, the hypothesis of whether a constant

satisfies some reasonably simple, low-degree polynomial can be tested by computing

the vector (1,a,c_2, ...,an-I) and then applying one of the recently discovered integer

relation finding algorithms [4, 15, 17]. Such algorithms, when applied to an n-long vector

z, determine whether there exist integers a_ such that E a_z_ = 0. Thus if a computation

finds such a set of integers a_, these integers are the coefficients of a polynomial satisfied by

a. Even if no such relation is found, these algorithms also produce bounds within which

no relation can exist, which results are of interest by themselves. Clearly such analysis can

be applied to any constant that can be computed to sufficiently high precision.

The author has performed some computations of this type [2, 4], and others are in

progress. Some results that have been obtained include the following: (1) _f does not

satisfy any polynomial of degree 12 or less with coefficients of Euclidean norm 1.04 × 1011

or less, (2) log 7r does not satisfy any polynomial of degree eight or less with coefficients

of Euclidean norm 2.32 x 10 s7 or less, and (3) the imaginary part of the first zero of

Pdemann's ¢ function does not satisfy any polynomial of degree 12 or less with coefficients

of Euclidean norm 4.71 × 1014 or less. In one case the author, working in conjunction with

H. R. P. Ferguson, obtained the following positive result: the third bifurcation point of the

chaotic iteration a_k+l = rxk(1 - zk)_ namely the constant 3.54409035955-.., satisfies the

polynomial 4913 + 2108t _ - 604t 3 - 977t 4 + 8__ + 44t s + 392t _ - 193t s - 40t 9 + 48t 10- 12t 11+ t 12.

One of the oldest applications of multiprecision computation is to explore the perplex-

ing question of whether the decimal expansions (or the expansions in any other radix) of

classical constants such as lr, e, x/2, etc. are random in some sense. Almost any reasonable

notion of randomness could be used here, including the property that every digit occurs

with limiting frequency 1/10, or the stronger property that every n-long string of digits

occurs with limiting frequency 10 -n. This conjecture is believed to hold for a very wide

range of mathematical constants, including all irrational algebraic numbers and the tran-

scendentals _" and e, among others. Its verification for a certain class of constants would

potentially have the practical application of providing researchers with provably reliable

pseudorandom number generators. Unfortunately, however, this conjecture has not been

proven in even a single instance among the classical constants of mathematics. Thus there

is continuing interest in computations of certain constants to very high precision, in order

to see if there are any statistical anomalies in the results. The computation of lr has been

of particular interest in this regard, and recently the one billion digit mark was passed by

both Kanada [18] and the Chudnovskys [12]. Statistical analyses of these results have so

far not yielded any statistical anomalies (see for example [1]).

An eminently practical application of multiprecision computation is the emerging field

of public-key cryptography, in particular research on the Rivest-Shamir-Adleman (RSA)

cryptosystem [22, 13]. This cryptosystem relies on the exponentiation of a large integer

to a large integer power modulo a third large integer. The RSA cryptosystem has also

spawned a great deal of research into advanced algorithms for factoring large integers,

since the RSA system can be "broken" if one can factor the modulus. The most impressive

result in this area so far is the recent factorization of the ninth Fermat number 2512 + 1, an

integer with 155 digits, which was accomplished by means of numerous computer systems

communicating by electronic mail. This computation employed a new factoring algorithm,

known as the "number field sieve" [20].

An indirect application of multiprecision computation is the integrity testing of com-

puter systems. A unique feature of multiprecision computations is that they are exceedingly

unforgiving of hardware or compiler error. This is because if even a single computational

error occurs, the result will almost certainly be completely incorrect after a possibly correct

initial section. In many other scientific computations, a hardware error in particular might

simply retard the convergence to the correct solution. On the other hand, if the result of

a large multiprecision computation is correct, then the system has most likely performed

millions or even billions of operations without error.

Not only do the final results constitute an integrity test, but there are several consistency

checks that can be performed in the course of a multiprecision computation. One of these

derives from the fact that when performing multiprecision multiplication using a complex

fast Fourier transform (FFT), the final inverse FFT results should be quite close to integer

values. If any result exceeds a nominal distance from an integer value, a hardware error

3

has likely occurred. Details are given in section 5.

The author's experience using current and prior versions of this package has confirmed

this principle. Systems in which errors have been disclosed by the MPFUN routines include

the following: the Cray-2 hardware, the Cray-2 CFT and CFT-77 Fortran compilers, the

Cray X-MP CFT Fortran compiler, the ETA-10 hardware, the ETA-10 Fortran compiler,

the DEC VAX 11/780 Fortran compiler, the Silicon Graphics IRIS hardware, the Silicon

Graphics IRIS Fortran compiler, the Sun-4 Fortran compiler and the Intel iPSC-860 Fortran

compiler. This list includes virtually all computer systems that the author has worked with

in the last few years! Fortunately most of these problems have subsequently been rectified.

2. A Comparison of MPFUN with Other Multiprecision Systems

Several software packages are available for multiprecision computation. One that has

been around for a while is the Brent MP multiprecision package, authored by R. P. Brent

[10]. This package has the advantage of being freely available either from the author or

from various other sources. It is very complete, including detailed numerical controls and

many special functions.

Another package available at some sites is MACSYMA, which was originally developed

at MIT but is now distributed by Symbolics, Inc. MACSYMA is actually a complete

symbolic mathematics package, and its multiprecision arithmetic capability is only one

part. A newer package of this sort is Mathematica, distributed by Wolfram Research, Inc.

It features support of impressive full-color graphics for owners of advanced workstations.

There exist a number of other multiprecision systems in use that are specifically targeted

for a particular computer system or for special applications. A package for large integer

computation, with a focus on the Cray-2, is described in [11]. With the multiprecision

computation tools currently available, some may question the need for yet another. In this

regard, the author has attempted to combine some of the more valuable features of existing

packages with a high performance design.

First of all, like Brent's MP package, the author's MPFUN package is freely available

(within the USA), whereas the commercial products typically have hefty price tags and

annual maintenance fees. Secondly, MPFUN runs virtually without change on any scientific

computer, whereas most of the others require significant customization from system to

system. As a result, an application written to call the author's routines on a workstation

or even on a personal computer can be effortlessly ported to a more powerful system, such

as a supercomputer, for extended computations.

One key feature of the MPFUN package is that it was written with a vector supercom-

purer or RISC floating point computer in mind from the beginning. Virtually all inner

loops are vectorizable and employ floating point operations, which have the highest perfor-

mance on supercomputers. As a result, MPFUN exhibits excellent performance on these

systems. None of the other widely available packages, to the author's knowledge, exhibits

respectable performance on supercomputers such as Crays. Also, the package avoids con-

structs that inhibit mnltiple processor computation. As a result, it can easily be modified

to employ multitasking software.

Multiprecision numbers are represented in the MPFUN package as vectors of floating-

point data with a dynamically variable length. Some other multiprecision systems, which

feature a fixed precision level, often waste considerable time by performing operations on

words containing zeroes. This dynamic precision level feature also means that MPFUN

can be used efficiently for high-precision integer as well as non-integer calculations.

A final distinguishing feature of the MPFUN package is its usage of advanced algo-

rithms. For many functions, both a "basic" and an "advanced" routine are provided.

The advanced routines employ advanced algorithms and exhibit superior performance for

extra-high precision (i.e. above about 1000 digit) calculations. For example, an advanced

multiplication routine is available that employs a fast Fourier transform (FFT), and rou-

tines implementing the new Borwein quadratically convergent algorithms for exp and log

are also provided.

3. Overview of the Package

The MPFUN package consists of approximately 8600 lines of Fortran code organized

into 68 subprograms. These routines operate on two custom data types, multiprecision

(MP) numbers and double precision plus exponent (DPE) numbers.

An MP number consists of a vector of single precision floating point numbers. The

sign of the first word is the sign of the MP number. The magnitude of the first word is

the count of mantissa words. The second word of the MP vector contains the exponent,

which represents the power of 1,000,000. Words beginning with the third word in the array

contain the mantissa. Mantissa words are floating point whole numbers between 0 and

990,909. For MP numbers with zero exponent, the "decimal" point is assumed after the

first mantissa word. For example, the MP number 3 is represented by the three-long single

precision vector (1., 0.,3.), and -123456789.012345 is represented by the five-long vector

(-3,1., 123.,456789., 12345.). An MP zero is represented by the two-long vector (0., 0.).

If sufficient memory is available, the maximum precision level for MP numbers is ap-

proximately 16 million digits. The limiting factor for this precision level is the accuracy

of calculations in the FFT-based multiplication routine. Beyond this level, rounding the

double precision results of the final FFT to nearest integer is no longer reliable (see section

5 below). The maximum dynamic range of MP numbers is 10+24'°°°'°o° on 32 bit systems,

and is higher still on 64 bit systems such as Crays.

A DPE number consists of a pair (A, N), where A is a double precision scalar in the

range 1 _ IA] < 10 and N is an integer. It represents A- 10 N. DPE numbers are useful

in multiple precision applications to represent numbers that do not require high precision

but may have large exponent ranges. A DPE zero is denoted by the pair (0., 0).

One may wonder why MP numbers are represented using floating point data, and why

a decimal radix was chosen. The first decision derives from the fact that floating point per-

formance is becoming the principal emphasis on almost all advanced scientific computers,

from workstations to high-end supercomputers. This is particularly true on Cray systems,

where the hardware instruction sets do not even include 64 bit integer multiplication or

division instructions -- such operations must be performed by first converting the argu-

ments to floating and then by using the floating point functional units. Basing MPFUN

on floating point operations has the additional benefit that it permits virtually universal

portabiUty in the resulting program code. The selection of a decimal radix was based on

the fact that on many systems floating point operations do not run any faster on power of

two data than on other data, and a decimal radix is certainly preferable for debug_ng and
maintenance.

There is one additional reason that the implementation is based on floating point arith-

metic, and that the package may appear to be optimized for systems based on vector or

RISC processors. This is because except for extremely high levels of precision (i.e. tens

of thousands or millions of di_ts), there is not a great deal of low-level parallelism in

multiprecision calculations. Thus except for modest-length vectors at the base level, mul-

tiprecision applications need to be paral]elized at a higher level. For example, if one is

performing computations with a matrix of mnltiprecision numbers, it is likely that paral-

lelism can be exploited at the level of rows or columns of the matrix. This suggests that the

preferred architecture for the parallel processing of multiprecision applications is a MIMD

array of vector or RISC processors. Thus this code was thus written with such a computer
model in mind.

MPFUN routines are available to perform the four basic arithmetic operations between

MP numbers, to produce the integer and fractional parts, to produce a random MP number

and to convert an MP number for input or output. Other routines perform operations

between DPE numbers or between MP and DPE numbers, which saves time compared

with performing these operations with the full MP routines. Some higher level routines

compute complex products and quotients, square roots, cube roots, n-th powers, n-th

roots, It, the functions exp, log, cos, sin, inverse cos and sin, the real or complex roots of

polynomials and integer relations of real vectors. For many of these functions, both basic

and advanced versions are available. The advanced routines employ advanced algorithms

suitable for extra high precision computation.

Computations on large integers can be efficiently performed using this package by set-

ting the working precision level two or three words higher than the largest integer that will

be encountered (including products). These extra words of precision permit accurate inte-

ger division to be performed, using a multiprecision floating point division routine followed

by a call to the routine that produces the integer and fractional parts of an MP number.

There is no wasted computation when the actual size of an integer argument is much less

than working precision level, since the MPFUN routines only perform arithmetic on the

actual sizes of input data.

4. Portability and Testing

As mentioned earlier, one distinguishing feature of the MPFUN package is its porta-

bility. The standard version of MPFUN should run correctly, without alteration, on any

computer with a Fortran-77 compiler that satisfies the following requirements [n and N

denote integers]:

.

.

The truncation of a double precision value not exceeding 2s°, either by assignment

to an integer variable or by using DINT, is correct.

The decimal-to-binary conversion of a double precision constant, which is either a

whole number not exceeding 1014 in absolute value or the fraction 1/2, is exact.

.

.

.

.

.

.

.

The decimal-to-binary conversion of any other double precision constant is correct to

one part in 5 × 10 TM.

The addition, subtraction, multiplication, truncated division, and exponentiation of

integer variables or constants, where the arguments and results do not exceed 2 30 in

absolute value, produce exact results.

The addition, subtraction and multiplication of single precision variables or constants,

where the arguments and results are whole numbers not exceeding 4 × 10 6 in absolute

value, produce exact results.

The addition, subtraction and multiplication of double precision variables or con-

stants, where the arguments and results are whole numbers not exceeding 1014 in

absolute value, produce exact results.

The multiplication of a double precision variable with value 2", -30 < n < 0, by the

fraction 1/2 produces an exact result.

The addition, subtraction, multiplication and division of double precision variables

or constants, where the arguments have values not mentioned above, produce results

correct to within one part in 5 × 10 TM.

The result of the operation 10.D0**N, where N is between 0 and 12, is either exact

or correct to within one part in 2 × 10 TM. The results of DLOG(X) and DLOG10(X)

for X between 10 -12 and 1012 are correct to within one part in 2 × 10 TM, except for

X between 0.1 and 10, where the results are correct to within 10 -13. The results of

DC0S(X) and DSIN(X) for I between -It and 7r are correct to within 5 × 10 -14. The

result of DATAN2 (X, ¥) for X and ¥ on the unit circle is correct to within 10 -is.

The author is not aware of any serious scientific computer system in use today that fails

to meet these requirements. Any system based on the IEEE 754 floating point standard,

with a 25 bit mantissa in single precision and a 53 bit mantissa in double precision, easily

meets these requirements. All DEC VAX systems meet these requirements. All IBM

mainframes and workstations meet these requirements. Cray systems meet all of these

requirements with double precision disabled (i.e. by using only single precision).

For IEEE systems or others with 52 or more bits in double precision data, an optional

modification yields a two-fold performance improvement in the advanced multiplication

routine for a certain range of precision levels. Details are given in the next section. There

are a few other places in the program file where some simple modifications can be made

7

to optimize performance on a particular system. No more than ten lines of code need to

be changed to tune the package for any system.

To insure that these routines are working correctly, a test suite is available. It exercises

virtually all of the routines in the package and checks the results. This test program is useful

in its own right as a computer system integrity test. As mentioned in the introduction,

versions of this program have on numerous occasions disclosed hardware and software bugs

in scientific computer systems.

5. The Four Basic Arithmetic Operations

Multiprecision addition and subtraction are not computationally expensive compared

to multiplication, division, and square root extraction. Thus simple algorithms suffice to

perform addition and subtraction. The only part of these operations that is not imme-

diately conducive to vector processing is releasing the carries for the final result. This is

because the normal "schoolboy" approach of beginning at the last cell and working forward

is a recursive (i.e. non-vectorizable) operation. On a vector computer this is better done by

starting at the beginning and releasing the carry only one cell back for each cell processed.

Unfortunately, it cannot be guaranteed that one application of this process will release all

carries. Thus it is necessary to repeat this operation until all carries have been released,

usually only one or two additional times. In the rare cases where three applications of this

operation are not successful in releasing all carries, the author's program resorts to the

scalar "schoolboy" method. On scalar or RISC computers, only the "schoolboy" scheme

is used.

A key component of a high-performance multiprecision arithmetic system is the multiply

operation, since in real applications typically a large fraction of the total time is spent

here. The author's basic multiply routine, which is used for modest levels of precision,

employs a conventional "schoolboy" scheme, although care has been taken to insure that

the operations are vectorizable. A significant saving is achieved by not releasing the carries

after each vector multiply operation, but instead waiting until 64 such vector mttltiply

operations have been completed. An additional saving is achieved by computing only the

first half of the multiplication "pyramid".

The schoolboy scheme for multiprecision multiplication has computational complexity

proportional to n 2, where n is the number of words or digits. For higher precision levels,

other more sophisticated techniques have a significant advantage, with complexity as low as

n log n log log n. The history of the development of advanced multiprecision multiplication

algorithms will not be reviewed here. The interested reader is referred to Knuth [19].

Because of the difficulty of implementing these advanced schemes and the widespread

misconception that these algorithms are not suitable for "practical" application, they are

rarely employed. For example, none of the widdy used multipredsion packages employs

an "advanced" multiplication algorithm. One instance where an advanced multiplication

technique was employed is [13].

The author has implemented a number of these schemes, including variations of the

Karatsuba-Winograd algorithm [19, p. 278] and schemes based on the discrete Fourier

8

transform (DFT) in various number fields [19, p. 290]. Basedon performancestudies
of theseimplementations, the author has found that a schemebasedon complex DFTs
appearsto be the most effectiveand efficient for modernscientific computer systems.The
complexDFT and the inversecomplexDFT of the sequencez = (Zo, Zl, z2,..., ZN-1) are

given by

N-1

F&(x) = F_,"J
j=0

1 N-1

j=O

Let C(x,y) denote the circular convolution of the sequences z and y:

N-1

j=O

where the subscript k - j is to be interpreted as k - j + N if k - j is negative. Then the

convolution theorem for discrete sequences states that

F[C(z,y)] = F(z)F(y)

or expressed another way

C(z,y) = F-I[F(x)F(y)]

This result is applicable to multiprecision multiplication in the following way. Let z and

y be n-long representations of two multiprecision numbers (without the sign or exponent

words). Extend z and y to length 2n by appending n zeroes at the end of each. Then

the multiprecision product z of z and y, except for releasing the carries, can be written as

foUows:

ZO = 2_OYO

Zl = zoyl -4-Zlyo

z2 = zoy2 + Zlyl -4- z2Yo

z.-1 = zoY.-i + zIy._= + .-- + z.-lYo

Z2n-3 -- T.n-1]/n-2 -J- T,n-2Yn-1

Z2n-2 = g:rt-1 _/tz-1

Z2n- 1 = 0

It can now be seen that this multiplication pyramid is precisely the convolution of the

two sequences z and y, where N -- 2n. In other words, the multiplication pyramid can

be obtained by performing two forward DFTs, one vector complex multiplication, and one

inverse DFT, each of length N = 2n. Once the inverse DFT results have been adjusted to

the nearest integer to compensate for any numerical error, the final multiprecision product

may be obtained by merely releasing the carries as described above.

The computational savings arises from the fact that complex DFTs may of course be

economically computed using some variation of the fast Fourier transform (FFT) algo-

rithm. The particular FFT algorithm utilized for the MPFUN advanced multiplication

routine is described in [3]. It was first proposed by Swarztrauber and is sometimes called

the "Stockham-Transpose-Stockham" FFT. This algorithm features reasonably high per-

formance on most computers, including vector and cache memory systems, and it can easily

be modified for multiple processor computation if desired. For the implementation in this

package, different techniques are employed for the matrix transposition step depending on

the computer system and the size of the array. Since in this application the two inputs and

the final output of the convolution are purely real, an algorithm is employed that converts

the problem of computing the FFT on real data to that of computing the FFT on complex

data of half the size. This results in a computational savings of approximately 50 percent.

One important detail has been omitted from the above discussion. Since the radix of

MP numbers is 10 e, the products zjyk_j are in the neighborhood of 1012, and the sum of

a large number of these products cannot be represented exactly as a 64 bit floating point

value, not matter how it is computed. In particular, the nearest integer operation at the

completion of the final inverse FFT cannot reliably recover the exact multiplication pyramid

result. For this reason, in the standard version of MPFUN, six digit data is always split

into two words of three digits each upon entry to the FFT-based multiply routine. This

permits computations of up to approximately 16 million digits to be performed correctly.

Included in the advanced multiply routine (although normally commented out) is some

code that determines the maximum FFT roundoff error, i.e. the maximum difference

between the final FFT results and the nearest integer values, and tests if it is greater than

a certain reliable level. This code can also be used as a system integrity test, since for

modest levels of precision with splitting, the maximum FFT roundoff error should be a

rather small number, and an excessive value indicates that a hardware or compiler error
has occurred.

On systems based upon the IEEE 754 standard, with 53 mantissa bits in double pre-

cision, it is possible to avoid this splitting operation for precision levels up to about 6,000

digits. Thus up to this level of precision, the advanced multiply routine runs twice as fast,

since FFTs of only half the normal size can be employed, although the FFT roundoff error

must be checked on each result. This feature also permits the cross-over point for the

advanced routines, i.e. the level of precision below which the advanced routines merely

call the basic routines, to be set lower. This feature can be implemented in the program

by changing a single line of code.

The division of two MP numbers of modest precision is performed using a fairly straight-

10

forward scheme. Trial quotients are computed in double precision, using up to three six

digit words of the dividend and up to three words of the divisor. This guarantees that the

trial quotient is virtually always correct. In those rare cases where one or more words of

the quotient are incorrect, the result is automatically fixed in a cleanup routine at no extra

computational cost.

In the advanced division routine, the quotient of a and b is computed as follows. First

the following Newton-Raphson iteration is employed, which converges to 1/b:

zk+l = x (2 - bzk)

Multiplying the final approximation to lib by a gives the quotient. Note that this algorithm

involves only a simple subtraction, plus two multiplications, which can be performed using

the FFT-based technique mentioned above.

Algorithms based on Newton iterations have the desirable property that they are in-

herently self-correcting. Thus these Newton iterations can be performed with a precision

level that doubles with each iteration. One difficulty with this procedure is that errors can

accumulate in the trailing mantissa words. This error can be economically controlled by

repeating the next-to-last iteration. This increases the run time by only about 25 percent,

and yet the result is accurate to all except possibly the last two words.

It can easily be seen that the total cost of computing a reciprocal by this means is

about 2.5 times the cost of the final iteration. The total cost of a multiprecision division

is only about six times the cost of a multiprecision multiplication operation of equivalent

size.

6. Other Algebraic Operations

Complex multiprecision multiplication is performed using the identity

Note that this formula can be implemented using only three multiprecision multiplications,

whereas the straightforward formula requires four. Complex division is performed using

the identity

bl + b2i b_ + b_

where the complex product in the numerator is evaluated as above. Since division is

significantly more expensive than multiplication, the two real divisions ordinarily required

in this formula are replaced with a reciprocal computation of b_ + b_ followed by two

multiplications. The advanced routines for complex multiplication and division utilize these

same formulas, but they call the advanced routines for real multiplication and division.

The general scheme described in the last section to perform division by Newton iter-

ations is also employed to evaluate a number of other algebraic operations. For example,

square roots are computed by employing the following Newton iteration, which converges

to 1/V/"a:

(3-Xk+l

11

Multiplying the final approximation to 1/x/_ by a gives the square root. As with division,

these iterations are performed with a precision level that approximately doubles with each

iteration. The basic square root routine computes each iteration to one word more than a

power of two. As a result, errors do not accumulate very much, and it suffices to repeat

the third-from-the-last iteration to insure full accuracy in the final result. The added cost

of repeating this iteration is negligible.

The advanced square root routine cannot compute each iteration to one greater than

a power of two words, since the levels of precision are restricted to exact powers of two

by the FFT-based multiply procedure. Thus the advanced routine repeats the next-to-

last iteration. As in the advanced divide routine, repeating the next-to-last iteration adds

about 25 percent to the run time.

Cube roots are analogously computed by the following Newton iteration, which con-

verges to a-2/s:

zk+l - 3

Multiplying the final approximation to a -2/s by a gives the cube root.

Included in the MPFUN package are a basic and an advanced routine to compute the

n-th power of a multiprecision number. This operation is performed using the binary rule

for exponentiation [19, p. 442]. When n is negative, the reciprocal is taken of the final
result.

Along with the n-th power routines are two n-th root routines. For most inputs, these

roots are computed using the following Newton iteration, which converges to a-1/n:

Zk(n+ 1 az_)Xk+ 1 --
n

The reciprocal of the final approximation to a -1/" is the n-th root. These iterations are

performed with a dynamic precision level as before. When the argument a is very close to

one and n is large, the n-th root is computed instead by the binomial expansion

a (1 - n)a _ (1 - n)(1 - 2n)a s
(l+a) 1/" = l+-n + 2!n _- + 3 v.n s +""

which is more economical in such cases. This feature results in significant time savings in

the advanced routines for exp and log, which call this routine.

The MPFUN package includes four routines for computing roots of polynomials. There

is a basic and an advanced routine for computing real roots of real polynomials and complex

roots of complex polynomials. Let P(z) be a polynomial and let P'(z) be the derivative

of P(z). Let z0 be a starting value that is dose to the desired root. These routines then

employ the following Newton iteration, which converges directly to the root:

_,k+l = a:k- V(zk)/P'(zk)

These iterations ate computed with a dynamic precision level scheme similar to the routines

described above.

12

One requirement for this method to work is that the desired root is not a repeated root.

If one wishes to apply these routines to find a repeated root, it is first necessary to reduce

the polynomial to one that has only simple roots. This can be done by performing the

Euclidean algorithm in the ring of polynomials to determine the greatest common divisor

Q(z) of P(z) and P'(z). Then R(z) = P(z)/Q(x)is a polynomial that has only simple
roots.

In the introduction, the usage of integer relation finding algorithms was mentioned in

exploring the transcendence of certain mathematical constants. The author has tested

two recently discovered algorithms for this purpose, the "small integer relation algorithm"

in [17], which will be termed the HJLS routine from the initials of the authors, and the

"partial sum of squares" (PSOS) algorithm of H. R. P. Ferguson [4]. While each has its

merits, the author has found that the ttJLS routine is generally faster. Thus it has been

implemented in MPFUN. For those readers interested in the PSOS algorithm, a routine

implementing it is also available from the author.

Since both the HJLS and PSOS algorithms are quite complicated, neither will be pre-

sented here. Interested readers are referred to the respective papers.

7. Computing _r

The computation of _r to high precision has a long and colorful history. Interested

readers are referred to [5] for discussion of the classical history of computing lr. Recently a

number of advanced algorithms have been discovered for the computation of lr that feature

very high rates of convergence [7, 8]. The first of these was discovered independently

by Salamin [23] and Brent [9] and is referred to as either the Salamin-Brent algorithm

or the Gauss-Legendre algorithm, since the mathematical basis of this algorithm has its

roots in the nineteenth century. This algorithm exhibits quadratic convergence, i.e. each

iteration approximately doubles the number of correct digits. Subsequently the Borweins

have discovered a class of algorithms that exhibit m-th order convergence for any m [7, 8].

The author has tested a number of these algorithms. Surprisingly, although the Borwein

algorithms exhibit higher rates of convergence, the overall run time is generally comparable

to that of the Salaxnin-Brent algorithm. Since the Salamin-Brent algorithm is simpler, it

was chosen for implementation in MPFUN. It may be stated as follows. Set a0 = 1, b0 =

l/v/2, and do = v/2 - 1/2. Then iterate the following operations beginning with k = 1:

ak = (ah-1 + bk-1)/2

bk -: _/ah-l bk-1

dk : dk-1 --2k(ak-- bk) 2

Then Pk = (ak + bk)_/dk converges quadratically to _r. Unfortunately this algorithm is

not self-correcting like algorithms based on Newton iterations. Thus all iterations must be

done with at least the precision level desired for the final result.

13

8. Transcendental Functions

The basic routine for exp employs a modification of the Taylor's series for et:

r 2 r 3 r 4
_____ • • .)8(1+,+ T.,+ T.,+ T., 10"

where r = t_/8, t' = t - nlog 10 and where n is chosen to minimize the absolute value of

t'. Reducing t in this manner and dividing by eight insures that -0.14 < r < 0.14, which

significantly accelerates convergence in the above series.

The advanced routine for exp employs a quadratically convergent algorithm first out-

lined by the Borweins in [6]. Very small inputs t cause numerical difficulties in the Borwein

algorithm, so the basic routine is called for these values. Larger inputs are reduced as

above to within one half of log 10 in absolute value.

The functions P(s) and Q(s) will now be defined. Set z0 = 8 and y0 = 16/(1 - s_).

Then iterate the following until convergence:

Xk+l --
zk+l

(zh + 1)"-'Yk+l = Yk 2

The extraction of 2k-th roots in the last line is performed by the advanced n-th root routine.

! _ 1,P(s) is then defined as the limiting value of yk. To define Q(s), set a0 1, b0 = s, a 0

and b_ = _ - s 2. Then iterate the following until convergence:

ak+l = (ak +bk)/2

bk+ l --=-

! = + b',)/2

Q(s) is defined as the ratio of the limits of a, and a_,. With P(,) and Q(,) defined, e t

may be evaluated by using Newton iterations with a dynamic precision level to solve the

equation Q(8) = Itl/_r for 8, and then evaluating P(s). As an initial value for these Newton

iterations, the author has found that a double precision value of 8 = e1-_/(2_) suffices for

small positive t. If t < 0, the reciprocal is taken of the final result.

Since the usual Taylor series expansions of log z converge quite slowly, the basic routine

for log merely solves the equation z = e t for t using the basic exp routine and Newton

iterations with a dynamic precision level. The run time of the basic log routine is only

about 2.5 times that of the exp routine. The advanced routine for log is quite similar to

the advanced routine for exp, except that Newton iterations are used to solve the equation

P(s) = z for 8, and then 7rQ(8)is evaluated.

It might be mentioned that quadratically convergent algorithms for exp and log were

first presented by Brent in [9]. Based on the author's comparisons, however, Brent's algo-

rithms are not quite as fast as the Borweins'. For this reason the Borwein algorithms were

selected for inclusion in this package.

14

The basic routine for sin and cos utilizes the Taylor's series for sin s:

8 3 8 5 8 7

sins = s-_+5_-7-_...

where s = t - a_r/2 - bz'/16 and the integers a and b are chosen to minimize the absolute
value of s. We can then compute

sint = sin(s + a_r/2 + _/16)

cost = cos(s + alrl2 + blr/16)

by applying elementary trigonometric identities for sums. The sin and cos of bz'/16 are of

the form 0.56 + V/2 ± v_. Reducing t in this manner insures that -_r/32 <s < _r/32,

which significantly accelerates convergence in the above series.

An advanced routine for sin and cos could be obtained by performing the Borwein

algorithms with complex arithmetic instead of real arithmetic. Unfortunately, the resulting

routine would not be competitive with the above Taylor's series scheme unless a precision

level of over 10,000 digits were used. Thus the advanced routine for sin and cos utilizes

the same algorithm as the basic routine.

The basic and advanced routines for inverse sin and cos merely solve the system of

equations [cos t = z, sin t = y] using Newton iterations with a dynamic precision level.

9. Accuracy of Results

Most of the basic routines are designed to produce results correct to the last word of

working precision, as is the advanced multiplication routine. Basic routines not guaranteed

to the last word include the transcendental functions, where the accuracy of the results is

limited by the accuracy of the input values _r and log 10. For the advanced routines other

than multiplication, the last two to four words are not reliable, depending on the routine.

The accuracy of results from the MPFUN routines can be controlled by setting a round-

ing mode parameter. Depending on the value of this parameter, results are either truncated

at the last mantissa word of working precision, or else the last word is rounded up depend-

ing on contents of the first omitted word.

Whichever routines and rounding mode are used, it is not easy to determine ahead of

time what level of precision is necessary to produce results accurate to a desired tolerance.

Also, despite safeguards and testing, a package of this sort cannot be warranted to be free

from bugs. Additionally, compiler and hardware errors do occur, and it is not certain that

they will be detected by the package. Thus the following procedure is recommended to

increase one's confidence in computed results:

1. Start with a working double precision program, and then check that the ported

multiprecision code duplicates intermediate and final results to a reasonable accuracy.

2. Where possible, use the ported multiprecision code to compute special values that

can be compared with other published high precision values.

15

3. Repeat the calculation with the rounding mode parameter changed, in order to test

the sensitivity of the calculation to numerical error. Alternatively, repeat the calcu-

lation with the precision level set to a higher level.

4. Repeat the calculation on another computer system, in order to certify that no hard-

ware or compiler error has occurred.

10. Using the MPFUN Package

Specific instructions for converting an application to perform multiprecision arithmetic

using the MPFUN routines are given in the appendix. The appendix also contains a com-

plete list of the MPFUN routines, together with calling sequences and other information.

It should be mentioned that the task of converting an application to reference the

MPFUN routines will be greatly facilitated when the Fortran-90 language standard is

adopted. The latest draft of this standard [16], which is considered to be very close to the

final version, provides for "derived data types" and "defined operations". These features

would allow one to define a new data type, MULTIPRECISION, and specify that certain

variables have this type. Then by extending the standard arithmetic operators using

an interface module, the appropriate MPFUN routine would be referenced whenever a

multiprecision wriable occurs in an expression. Even the operator = could be redefined

in this way, so that for example conversion between double precision and multiprecision

could be performed by a simple assignment statement. Usage of such features will of course

have to await the final adoption of this standard and its implementation on a number of

scientific computer systems.

11. Performance

Table 1 gives some performance results of the MPFUN package. These results compare

this package with the Brent MP package, perhaps the most widely used mnltiprecision

computation package. The problem selected for comparison is the computation of 7r using

the Salaanin-Brent algorithm, since this computation exercises all of the basic and advanced

arithmetic and square root routines. Timings in seconds are included for both a PJSC

workstation and a supercomputer. The RISC workstation is one processor of the 4D-

320 model from Silicon Graphics, Inc. (SGI), which has a theoretical peak performance

of 16 MFLOPS and a Linpack performance of 4.9 MFLOPS (double precision figures).

The supercomputer is one processor of the Cray Y-MP, which has a theoretical peak

performance of 330 MFLOPS and a Linpack performance of 90 MFLOPS. When these

runs were made, the SGI system was running IPHX 3.3 system software, and the Cray was

running UNICOS 6.0. A blank in the table indicates that the run would have taken an

unreasonable amount of time and was not performed. The number of digits in the second

column is equal to 6 • 2M.

It can be seen from these results that the MPFUN package is uniformly faster than the

MP package on both systems. On the SGI system, MPFUN is only about twice as fast

as MP for lower precision levels, but once the level of precision rises above 1000 digits,

MPFUN has a considerable advantage, due mainly to its FFT-based multiply routine. At

16

12,288 digits precision, the highest level at which both programs could be compared, the

MPFUN package is 13 times faster. The relatively sharp jump in MPFUN timings on the

SGI system between M = 10 and M = 12 is due in part to the fact that the splitting

operation described in section 5 cannot be avoided for M greater than ten.

On the Cray Y-MP, the results are even more favorable u the MPFUN package is

four times faster at the lowest precision and 154 times faster at 49,152 digits precision, the

highest level at which both could be compared. The fact that this ratio is much higher

than on the SOI system (and therefore much higher than can be accounted for based on

operation counts done) is chiefly due to a very high level of vectorization in the innermost

loops of the MPFUN routines, as weU as their reliance on floating point instead of integer

operations. The MPFUN run times on the Y-MP do not exhibit any sharp jumps because

the splitting operation is always performed whenever the advanced multiplication routine

is invoked on this system. At the highest precision level listed, the Y-MP is running the

author's code at 188 MFLOPS, or 57% of the one processor peak rate.

M

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

MPFUN Times

Digits SGI Y-MP

96

192

384

768

1,536

3,072

6,144

12,288

24,576

49,152

0.03

0.08

0.24

0.70

1.59

4.03

9.01

34.76

151.84

448.65

0.0054

0.0085

0.0147

0.0304

0.0776

0.1752

0.4249

0.8837

1.8617

4.0248

MP Times

SGI Y-MP

0.05 0.0199

0.13 0.0386

0.41 0.0865

1.52 0.2368

6.07 0.5860

25.60 2.1154

108.17 8.5274

454.56 34.9628

146.8758

619.6510

98,304

196,608

393,216

786,432

1,572,864

8.6533

19.0777

41.4193

94.8807

196.6377

Table 1: Performance Results

17

References

1. Bailey, D. H., "The Computation of lr to 29,360,000 Decimal Digits Using Borweins'

Quartica_ly Convergent Algorithm", Mathematics of Computation, vol. 50 (Jan.

1988), p. 283 - 296.

2. Bailey, D. H., "Numerical Results on the Transcendence of Constants Involving lr, e,

and Euler's Constant", Mathematics of Computation, vol. 50 (Jan. 1988), p. 275 -

281.

3. Bailey, D. H., "A High Performance FFT Algorithm for Vector Supercomputers",

International Journal of Supercomputer Applications, vol. 2 (Spring 1988), p. 82 -

87.

4. Bailey, D. H., and Ferguson, H. R. P., "Numerical Results on Relations Between

Numerical Constants Using a New Algorithm", Mathematics of Computation, vol.

53 (October 1989), p. 649 - 656.

5. Beckmann, P., A History of Pi, Golem Press, Boulder CO, 1977.

6. Borwein, J. M., and Borwein, P. B., "The Arithmetic-Geometrlc Mean and Fast

Computation of Elementary Functions", SIAM Review vol. 26 (1984), p. 351 - 365.

7. Borwein, J. M., and Borwein, P. B., Pi and the AGM, John Wiley, New York, 1987.

8. Borwein, J. M., Borwein, P. B., and Bailey, D. H., "Ramanujan, Modular Equations,

and Approximations to Pi", The American Mathematical Month/y, vol. 96 (1989),

p. 201 - 219.

9. Brent, R. P., "Fast Multiple-Precision Evaluation of Elementary Functions", Journal

of the ACM, vol. 23 (1976), p. 242 - 251.

10. Brent, R. P., "A Fortran Multiple Precision Arithmetic Package", ACM Transactions

on Mathematical Software, vol. 4 (1978), p. 57 - 70.

11. Buell, D., and Ward, R., "A Multiprecise Integer Arithmetic Package", Journal of

Supercomputing, vol. 3 (1989), p. 89 - 107.

12. Chudnovsky, D. V. and Chudnovsky, G. V., "Computation and Arithmetic Nature

of Classical Constants", IBM Research Report, IBM T. J. Watson Research Center,

RC14950 (#66818), 1989.

13. Comba, P. G., "Exponentiation Cryptosystems on the IBM PC", IBM Systems Jour-

nal, vol. 29 (1990), p. 526 - 538.

14. Feigenbaum, M. J., "Quantitative Universality for a Class of Nonlinear Transforma-

tions", Journal of Statistical Physics, vol. 19 (1978), p. 25 - 52.

18

15. Ferguson, H. R. P., and Forcade, R. W., "Generalization of the Euclidean Algorithm

for Real Numbers to All Dimensions Higher Than Two", Bulletin of the American

Mathematical Society, vol. 1 (1979), p. 912 - 914.

16. Fortran 90, draft working document of X3J3, American National Standards Institute,

New York, June 1990.

17. Hastad, J., Just, B., Lagarias, J. C., and Schnorr, C. P., "Polynomial Time Al-

gorithms for Finding Integer Relations Among Real Numbers", SIAM Journal on

Computing, vol. 18 (1988), p. 859 - 881.

18. Kanada, Y., personal communication, 1989.

19. Knuth, D. E., The Art of Computer Programming, Addison Wesley, Menlo Park,
1981.

20. Lenstra, A. K., Lenstra, H. W., Manasse, M. S., Pollard. J. M., "The Number Field

Sieve", 1990 ACM Symposium on the Theory of Computing, p. 564 - 572.

21. Odlyzko, A. M. and te Riele, H. J. J., "Disproof of the Mertens Conjecture", J. Reine

Angew. Mathematik, vol. 357 (1985), p. 138 - 160.

22. Rivest, R. L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital Signa-

tures and Public-Key Cryptosystems", Communications of the ACM, vol. 21 (1978),

p. 120- 126.

23. Salamin, E., "Computation of Ir Using Arithmetic-Geometric Mean", Mathematics

of Computation, vol. 30 (1976), p. 565 - 570.

24. Varga, R. S., Scientific Computation on Mathematical Problems and Conjectures,

SIAM, Philadelphia, 1990.

19

Appendix: Usage Instructions

The MPFUN routines are listed, together with a brief functional description in Tables

2 and 3. Note that no routines are provided for absolute value or negation, since these

operations may be performed by merely taking absolute value of or negating the first word

of the single precision vector representing an MP number. Before calling any of these

routines, some integer parameters in common block MPC0M1 should be set. In order, they

are NW, IDB, LDB, IER, MCR, IltD, ICS, IHS, and INS. They are defined as follows:

.

.

.

4.

NWis he maximum number of mantissa words. This should be set by the user in the

main calling program to ND/6, where ND is the desired maximum precision level in

digits. Some routines modify this parameter but restore it prior to exiting. Default:

16 (i.e. 96 digits).

IDB is a debug flag and ordinarily should be set to zero. Setting IDB to an integer

between 4 and 10 produces debug printouts in varying degrees of detail from the

subroutines of this package. Values of IDB between 1 and 3 are available for use as

debug flags in the user's calling program if desired. Default: 0.

LDB is the logical unit number for output of debug and error messages. Default: 6.

IER is an error flag and should initially be set to zero. It is set to nonzero values by

the routines when an error condition is detected.

o

.

o

MClt is the "crossover" point for the advanced routines -- if an advanced routine is

called with a precision level _ that is 2.*HClt or less, the advanced routine merely

calls the basic MP routine. Default: 8 (7 on IEEE systems).

IltD controls the rounding mode: when IRD = 0, the last word is truncated, i.e.

the same compared with higher precision; when IItD = 1, the last mantissa word is

rounded up if the first omitted word is 500,000 or more; when IltD = 2, the last

mantissa word is rounded up if the first omitted word is nonzero. Default: 1.

ItS is the current single precision scratch space stack pointer and should initially be

set to one.

8. IHS is the current "high water mark" of ItS and should be initially set to one.

9. IMS is the maximum single precision scratch space available. Default: 1024.

Common block MPCOM2 contains an integer array KER of length 72. This array controls

the action taken when one of the MP routines detect an error condition, such as an at-

tempted divide by zero. If the entry corresponding to a particular error number is zero,

the error is ignored and execution resumes, although the routine that detects the condition

is usually exited. If the entry is one, a message is output on unit LDB, and IElt is set to

the error number (an integer between 1 and 72), but execution resumes. If the entry is

20

two, a message is output and execution is terminated. All entries of the KER array are

initialized to two in a block data subprogram. The user may change some of these entries

by including the common NPCOM2 in the user's program.

An MP argument may not be used as both as an input and an output variable in a

call to one of the MP routines. Output arrays for holding MP results generally require

NW+4 single precision cells. An exception is MPDMC, where the output MP variable only

requires seven cells. HPC0UT produces literal results, which require 6*NW+20 cells of type

CHAI_CTER*I. Many of these routines require either single precision or double precision

scratch space or both. Single precision scratch space is contained in common block MPCOM3,

while double precision scratch space is contained in common block HPCOM4. As a default,

the package allocates 1024 cells in each of these two blocks.

The amount of single precision scratch space needed for an application varies widely

depending on the routines used and the precision level NW. The maximum amount for each

routine is given in Tables 2 and 3. The simplest way to determine the proper amount

for a program is to run the code with an ample amount and then output the value of

the parameter IHS in common MPC0H1 upon completion. If insumcient space has been

allocated, an error message will be output (error code 5) and execution will be terminated.

If this occurs, the user must allocate a larger single precision array (with at least the

number of words indicated in the error message) and place it in common HPC0M3 in the

user's main program. In addition, the parameter IMS in MPCOM1 must be set to this larger

number.

There is no nesting of double precision scratch space, and so the amount required is

simple to determine. Let NI be the largest precision level NWused in an application. Then

at most NX+7 double precision cells are required for the basic MP routines, and at most

12.NX+6 cells are required for the advanced routines. If more than the default 1024 cells

are required, the user must allocate a larger array and place it in common MPCOM4 in the

user's main program. Since it is straightforward to determine ahead of time the required

level of double precision scratch space, the package does not perform automatic checking

as it does for single precision scratch space.

If any of the advanced routines (i.e. those whose name ends in X) is called, the user must

also allocate and initialize an array in common HPC0MS. The advanced routines should be

called with a level of precision NWthat is a power of two, so let NI = 2**HX be the largest

level that will be used in a program. Then the user must allocate at least 8*NX double

precision cells in common block HI>C0M5 and must call HPINII with argument MXto initialize

the array in NPCOMS. Again, since the amount of space is straightforward to determine, no

automatic checking is performed.

If the user does allocate arrays in HPC0M3, MPC0M4 or MPC0M5 with different sizes than

the default 1024 cells, some systems may flag a warning message when the user's program is

compiled and linked with the precompiled MPFUN package, since this usage is technically

not allowed under a strict reading of the Fortran-77 standard. The author is not aware of

any system that flags a fatal error for such usage, provided that the common blocks in the

user's main program are at least as large as in this package.

21

The following strategy is recommended for converting an ordinary single or double

precision program to use the MPFUN package. First of all, make sure all MP variables

are declared single precision. Include the common HPCON1 in the main program and each

subroutine. Make sure all MP variables used in subroutines, including necessary scratch

arrays, are passed as subroutine arguments. Convert function subprograms to subroutines,

where an additional argument returns the MP function value.

In the main program, define a parameter, say NX, to be the value desired for the precision

level NW. Then declare every scalar MP variable to have dimension SX+4 and prepend NX+4

to the dimension of each MP array. In subroutines, declare every MP scalar to have

dimension S_/+4 and prepend]I_+4 to the dimension of every MP array. Whenever an

element of an MP array is passed as an argument to a subroutine, including one of the

multiprecision routines, prepend 1 to the subscript. For example, the double precision

program

PROGRAM SAMPLE

DOUBLE PRECISION A, B, C, DOT, T

PARAMETER (N = 25)

DIMENSION A(N), B(N)

100
C

100
C

DO 100 I = 1, N

T=I

A(I) = SQRT (T)
B(I) = 2.DO * A(I)

CONTINUE

C = DOT (N, A, B)

WRITE (6, '(1PD20.10)') C
STOP

END

FUNCTION DOT (N, A, B)

DOUBLE PRECISION A, B, DOT, S

DIMENSION A(N), B(N)

S = O.DO

DO 100 I = 1, N

S = S + A(I) * B(I)

CONTINUE

DOT = S

RETURN

END

is transformed into

22

C

C

C

C

C

C

C

C

C

C

C

PROGRAM SAMPLE

REAL A, B, C, S

DOUBLE PRECISION T

CHARACTER*I CX

Set the precision level to 120 digits. CX holds character data for

the output of C. D is a double precision scratch array needed for

MPMUL and MPSQRT. S is a scratch array large enough to hold three

MP temporaries.

PARAMETER (N = 28, ND = 120, NX = ND / 6)

DIMENSION A(NX÷4,N), B(NX÷4,N), C(NX+4)o CX(6*NX÷20), S(3.NX÷12)

COMMON /MPCOMI/ NW, IDB, LDB, IER, MCR, IRD, ICS, IHS, IMS

Set the parameter NW. Default values suffice for other parameters

in MPCOMI. The default scratch space in MPCOM3 and MPCOM4 is sufficient.

NW = NX

DO 100 I = I, N

T=I

CALL MPDMC (T, O, S)

CALL MPSQRT (S, A(I,I))

CALL MPMULD (A(I,I), 2.DO, O, m(1,I))

100 CONTINUE

C

CALL DOT (N, A, B, C, S)

CALL MPCOUT (C, CX, NN)

WRITE (6, '(6OAf)') (CX(I), I = I, NN)

STOP

END

C

C

C

C

C

C

SUBROUTINE DOT (N, A, B, C, S)

REAL A, B, C, S

DIMENSION A(NW÷4,N), B(NW÷4,N), C(NW+4), S(3.NW+12)

COMMON /MPCOMI/ NW, IDB, LDB, IER, MCR, IRD, ICS, IHS, IMS

KO, KI and K2 are the starting positions of three separate NW+4 long

sections of the scratch array S.

KO= I

K1 =NW+ 5

K2 = 2 * NW ÷ 9

CALL MPDMC (O.DO, O, S(KO))

23

lO0
C

DO 100 I = 1, N
CALL NPMUL (A(1,I), B(1,I), SCK1))

CALL MPADD (SCKO), SCK1), SCK2))

CALL MPEQ (S(K2), S(KO))

CONTINUE

CALL MPEQ (S(KO), C)
_TURN

END

This strategy has several advantages. First of all, it is straightforward. Secondly,

the user is spared the necessity of manually computing indices or offsets in subscripts of

multiprecision arrays. Finally, changing the precision level and changing the dimensions

of the multiprecision arrays throughout the program can both be accomplished by merely

altering a single PARAMETERstatement in the main program.

Notes for Tables 2 and 3.

In Tables 2 and 3, the argument PI denotes an MP value of lr, which must have been

previously computed by calling either MPPI or MPPIX. The argument ALl0 denotes an

MP value of log 10, which must have been previously computed by calling either MPLOG

or MPLOGX. Notation such as (A, N) in the third column denotes a DPE number, which

has value A * 10**N. In the scratch space column, NWis the precision level parameter in

common MPCOM1. All other variables, unless indicated otherwise, denote MP numbers.

°

.

MPANG and MPANGX compute the MP angle A subtended by the MP pair [X, Y]

considered as a point in the z, _/plane. This is more useful than an arctan or arcsin

routine, since it places the result correctly in the full circle, i.e. in the interval (-_r, _r].

MPCMUL, MPCMLX, MPCDIV, and MPCDVX and perform complex multiplication and

complex division. L is the offset between the real and imaginary parts of A, B and

C. L must be at least I_+4.

.

.

HPCINP converts the CHAPACTER*I string A of length N to MP form in B, while HPCOUT

converts the MP number A into the CHAI_CTER*I string B of length N. Strings input

to MPCINP must be in the format lO_sa x tb.c where a, b and c are digit strings,

s and t are - or blank, and x is either x or *. Blanks may be embedded anywhere.

The digit strings a and b are Limited to nine digits and 80 total characters each,

including blanks. The exponent portion (i.e. the portion up to and including x) may

optionally be omitted.

HPCPOL and HPCPLX find a complex root of the N-th degree polynomial whose com-

plex MP coefficients are in A by Newton-Raphson iterations, beginning at the com-

plex DPE value (X1(1), NX(1)) + i (Xl (2), NX(2)), and return the complex MP

root in X. The N+I coefficients ao, al, ...,aN are assumed to start in locations A(1),

24

Routine Calling Functional Single Prec.

Name Sequence Description Scratch Space

DPADD

DPDIV

DPMUL

DPP_FR

DPSQRT

DPSUB

MPADD

MPANG

MPANGX

MPCBRT

MPCBRX

MPCDIV

MPCDVI

MPCINP

MPCMLX

MPCMUL

MPCOUT

MPCPLX

MPCPOL

MPCSSN

MPCSSI

MPDEB

MPDIV

MPDIVD

MPDIVX

MPDMC

MPEq
MPEIP

MPEIPX

MPINFR

MPINIX

MPINRL

MPINRX

MPLOG

MPLOGZ

MPMDC

MPMUL

MPMULD

MPMULX

MPNINT

(A, NA, B, NB, C, NC)

(A, NA, B, NB, C, NC)

(A, NA, B, NB, C, NC)

(A, NA, B, NB, C, NC)

CA, NA, B, NB)

(A, NA, B, NB, C, gO)

(A, B, C)

(X, Y, PI, A)

(X, Y, PI, A)

(A, B)

(A, B)
(L, A, B, C)

(L, A, B, C)

(A, N, B)
(L, A, B, C)

(L, A, B, C)

(A, N, B)

(N, LA, A, X1, NX, LI, X)

(N, LA, A, X1, NX, LX, X)

(l, PI, X, Y)

(A, PI, I, ¥)

(cs, A)
(A, B, C)
(A, B, N, C)

(A, B, C)

(A, N, B)

(A, B)
(A, ALIO, B)

(T, PI, ALIO, Z)

(A, B, C)

(M)

(N, LX, X, MN, MT, LE, R, IQ)

(N, LX, X, MN, MT, LR, R, Iq)

(c, sc) = (A, sA) + (B, gB)
(C, NC) = (A, NA) / (B, NB)

(C, NC) = (A, NA) * (B, NB)

(C, NC) = (A, NA) ** (B, NB)

(e, NB) = Sqrt (A, NA)

(C, NC) = (A, NA) - (B, NB)

C=A+B

A = Lug [I, Y]. See note 1.

A = Ang [X, Y]. See note 1.

B = A ** (1/3)
B = A ** (113)

C = A / B complex. See note 2.

C = A / B complex. See note 2.

Converts for input. See 3.

C = A * B complex. See note 2.

C = A $ B complex. See note 2.

Converts for output. See 3.

Finds complex roots. See 4.

Finds complex roots. See 4.

x = Cos [A], Y = Sin [A]
X = Cos [A], Y = Sin [A]

14.NW+81

19.NW+101

3.NW+15

4.5.NW+27

5*NW+20

7.NW+28

NW+4

4.NW+16

4.NW+16

17.5.NW+115

1S*NW+TS

9.NW+47

10.NW+46

Outputs A preceded by the character string CS.
C=A/B

C = A / (B, N). See note 5. NW+4

C = A / B 2*NW+8

B = (A, N). See note 5.

B=A

B = Exp [A] S*NW+2S

Z = Exp [T] 25.NW+120

B = Int [A], C = Frac [A]

Initializes for extra high precision. See 6.

Finds integer relations. See 7. NI*(NW+4)

Finds integer relations. See 7.

(A, ALIO, B)

(Z, PI, ALIO, T)

(A, B, _)
(A, B, C)

(A, B, N, C)

(A, B, C)

(A, B)

B = Log [A]

T = Log [Z]

(S, N) = A

C=A$B

C = A * (B, N). See note 6.

C=AsB

B = Nint [A]

N2*(NW+4)

8.NW+48

28.NW+120

NW+4

NW+4

Table 2: List of Routines

25

Routine Calling Functional Single Prec.

Name Sequence Description Scratch Space

HPNPk'R

HPNPWI

MPNRT

MPNRTX

MPPI

MPPIZ

MPPOL

MPPOLX

MP&AND

MPSQRT

_PSQ&X
MPSUB

(N, A, B)

(w, A, n)
(W, A, B)

(N, A, B)

(Pi)
(PI)

(N, L, A, ll, NX, X)

(N, L, A, Xl, NX, X)

(A)
(A, B)
(A, B)
(A, B, C)

B=A**N

B=A**N

B = A ** (l/N)

B = A ** (I/N)

PI = Pi

PI = Pi

Finds real roots of polys. See 8.

Finds real roots of polys. See 8.

A = Random number in [0, 1].

B = Sqrt [A]

B = Sqrt [A]
C=A-B

2*NW+IO

2*NW+8

6.NW+32

7.NW+48

7.NW+37

8.NW+38

5.NW+25

7.5.NW+45

2*NW+IO

3*NW+18

Table 3: List of Routines, Cont.

A(2*LA+I), A(4*LA+I), etc. LA is the offset between the real and the imaginary

parts of each input coefficient. Typically LA = N_/+4. LX, also an input parameter, is

the offset between the real and the imaginary parts of the result to be stored in X.
LX must be at least NW+4.

5. Accurate results are not guaranteed if the absolute value of the double precision

argument (i.e. A in MPDNCor B in MPMULDand MPDIVD) is outside the range (10 -6,1012)

or has more than 12 significant digits. The integer exponent N may have any value.

6. HPINIX must be called prior to using any advanced routine (i.e. any routine whose

name ends in X). Calling MPINIX with argument M initializes for precision level NW

= 2**H. The user must also allocate 2** (H+3) double precision cells in an array in

common MPCOM5. Only one call to HPINIX is required in a program.

7. HPINRL and HPINRX search for integer relations among the entries of the N-long MP

vector X. An integer relation is an integer vector r such that rlzl +r2z2+...+r,_z, = 0.

The entries of z are assumed to start at X(1), X(LX+I), X(2*LX+I), etc. Typically

LX is set to NW÷4. HN is the log10 of the maximum Euclidean norm of an acceptable
relation. When it has been determined that there are no relations with norm less than

10**HN, processing is stopped, gr is the log10 of the tolerance used for checking that a

putative relation is a real one. This parameter is necessary because sometimes these

routines require a higher level of working precision than the level used to generate

the inputs. Iq is set to 1 if the routine succeeds in recovering a relation within the

required bound. Otherwise IQ is set to 0. When a relation vector is recovered, it

is placed in R, beginning at R(1), R(LR+I), R(2*LR+I), etc., where LR, like LX,

is an input parameter. LR should be at least MN/6+3. The parameters N1 and N2

in the scratch space column denote 4.N*.2 + 5*N + 13 and 4.N*.2 + 5*N + 14,

26

respectively. It is recommended that users set the debug parameter IDB in common

MPCOM1 to 5 for the first few times in order to gain insight into the operation of

these routines.

8. MPPOL and ICPPOLX find a real root of the N-th degree polynomial whose MP coefficients

are in A by Newton iterations_ beginning at the DPE value (Xl, NX) and return the

MP root in X. The N+I coefficients a0,al,...,aN are assumed to start in locations

A(1), A(L+I), A(2*L+l),etc. Typically L = NW+4.

27

